Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes

نویسندگان

  • Jun Zhu
  • Chi-Wang Shu
چکیده

Abstract A new class of high order weighted essentially non-oscillatory (WENO) schemes [J. Comput. Phys., 318 (2016), 110-121] is applied to solve Euler equations with steady state solutions. It is known that the classical WENO schemes [J. Comput. Phys., 126 (1996), 202-228] might suffer from slight post-shock oscillations. Even though such post-shock oscillations are small enough in magnitude and do not visually affect the essentially non-oscillatory property, they are truly responsible for the residue to hang at a truncation error level instead of converging to machine zero. With the application of this new class of WENO schemes, such slight post-shock oscillations are essentially removed and the residue can settle down to machine zero in steady state simulations. This new class of WENO schemes uses a convex combination of a quartic polynomial with two linear polynomials on unequal size spatial stencils in one dimension and is extended to two dimensions in a dimension-by-dimension fashion. By doing so, such WENO schemes use the same information as the classical WENO schemes in [J. Comput. Phys., 126 (1996), 202-228] and yield the same formal order of accuracy in smooth regions, yet they could converge to steady state solutions with very tiny residue close to machine zero for our extensive list of test problems including shocks, contact discontinuities, rarefaction waves or their interactions, and with these complex waves passing through the boundaries of the computational domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study on the convergence to steady state solutions of a new class of finite volume WENO schemes: triangular meshes

In this paper we continue our research on the numerical study of convergence to steady state solutions for a new class of finite volume weighted essentially non-oscillatory (WENO) schemes in [38], from tensor product meshes to triangular meshes. For the case of triangular meshes, this new class of finite volume WENO schemes was designed for time-dependent conservation laws in [37] for the third...

متن کامل

High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essentially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution, and the principles of residual distributi...

متن کامل

Improvement of Convergence to Steady State Solutions of Euler Equations with the WENO Schemes

The convergence to steady state solutions of the Euler equations for high order weighted essentially non-oscillatory (WENO) finite difference schemes with the Lax-Friedrichs flux splitting [Jiang G.-S. and Shu C.-W. (1996), J. Comput. Phys. 126, 202-228] is investigated. Numerical evidence in [Zhang S. and Shu C.-W. (2007), J. Sci. Comput. 31, 273-305] indicates that there exist slight post-sho...

متن کامل

High order fixed-point sweeping WENO methods for steady state of hyperbolic conservation laws and its convergence study

Fixed-point iterative sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilizes the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the c...

متن کامل

Accelerating high-order WENO schemes using two heterogeneous GPUs

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 349  شماره 

صفحات  -

تاریخ انتشار 2017